Extensions 1→N→G→Q→1 with N=C22⋊F5 and Q=C22

Direct product G=N×Q with N=C22⋊F5 and Q=C22
dρLabelID
C22×C22⋊F580C2^2xC2^2:F5320,1607

Semidirect products G=N:Q with N=C22⋊F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C22⋊F51C22 = C2×D10.D4φ: C22/C2C2 ⊆ Out C22⋊F580C2^2:F5:1C2^2320,1082
C22⋊F52C22 = (C2×D4)⋊7F5φ: C22/C2C2 ⊆ Out C22⋊F5408+C2^2:F5:2C2^2320,1108
C22⋊F53C22 = C2×C23⋊F5φ: C22/C2C2 ⊆ Out C22⋊F580C2^2:F5:3C2^2320,1134
C22⋊F54C22 = C2×D4×F5φ: C22/C2C2 ⊆ Out C22⋊F540C2^2:F5:4C2^2320,1595
C22⋊F55C22 = D10.C24φ: C22/C2C2 ⊆ Out C22⋊F5408+C2^2:F5:5C2^2320,1596

Non-split extensions G=N.Q with N=C22⋊F5 and Q=C22
extensionφ:Q→Out NdρLabelID
C22⋊F5.1C22 = C23⋊F55C2φ: C22/C2C2 ⊆ Out C22⋊F5804C2^2:F5.1C2^2320,1083
C22⋊F5.2C22 = (C2×D4)⋊8F5φ: C22/C2C2 ⊆ Out C22⋊F5808-C2^2:F5.2C2^2320,1109
C22⋊F5.3C22 = (C2×Q8)⋊7F5φ: C22/C2C2 ⊆ Out C22⋊F5808+C2^2:F5.3C2^2320,1123
C22⋊F5.4C22 = C4○D4×F5φ: C22/C2C2 ⊆ Out C22⋊F5408C2^2:F5.4C2^2320,1603
C22⋊F5.5C22 = D5.2+ 1+4φ: C22/C2C2 ⊆ Out C22⋊F5408C2^2:F5.5C2^2320,1604
C22⋊F5.6C22 = C2×D10.C23φ: trivial image80C2^2:F5.6C2^2320,1592
C22⋊F5.7C22 = D5.2- 1+4φ: trivial image808-C2^2:F5.7C2^2320,1600

׿
×
𝔽